K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

Dirichlet à:))?

Trong 3 số dương a,b,c tồn tại ít nhất 2 số cùng nhỏ hơn hoặc không nhỏ hơn 1

G/s 2 số đó là a và b

Khi đó: \(\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab\ge a+b-1\Leftrightarrow2abc\ge2ca+2bc-2c\)

\(\Rightarrow a^2+b^2+c^2+2abc+1\ge a^2+b^2+c^2+2ca+2bc-2c+1\)

Mà \(\left(a^2+b^2+c^2+2ca+2bc-2c+1\right)-2\left(ab+bc+ca\right)\)

\(=\left(a^2-2ab+b^2\right)+\left(c^2-2c+1\right)=\left(a-b\right)^2+\left(c-1\right)^2\ge0\left(\forall a,b,c\right)\)

\(\Rightarrow a^2+b^2+c^2+2ca+2bc-2c+1\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Dấu "=" xảy ra khi: a = b = c = 1

6 tháng 5 2021

Theo nguyên lý Dirichlet, ta thấy rằng trong ba số a,b,c sẽ có hai số hoặc cùng ≥1 hoặc cùng ≤1. Giả sử hai số đó là a,b khi đó:
(a−1)(b−1)≥0.
Từ đây, bằng cách sử dụng hằng đẳng thức:
a2+b2+c2+2abc+1−2(ab+bc+ca)=(a−b)2+(c−1)2+2c(a−1)(b−1)≥0
Ta thu được ngay bất đẳng thức (1), phép chứng minh hoàn tất.

Search mạng!!

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

Áp dụng BĐT Cô-si:

$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$

$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$

$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$

Cộng các BĐT trên theo vế và thu gọn ta được:

$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$

Ta có đpcm.

27 tháng 8 2021

Giả sử \(c\le1\).

Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)

\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)

Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).

Theo giả thiết:

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)

\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)

\(\Leftrightarrow ab\le2-c\)

Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.

Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).

\(\Rightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab\ge a+b-1\)

\(\Leftrightarrow abc\ge ca+bc-c\)

\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.

 

7 tháng 3 2022

mn giúp em với em đang gấp

 

Ta viết lại bất đẳng thức cần chứng mình là:

\(a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\ge0\)

Xét: \(f\left(a\right)=a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\)

Ta thấy nếu \(bc-b-c\ge0\)khi đó ta luôn có \(f\left(a\right)\ge0\)hay:

\(a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\ge0\)

Bây giờ xét trường hợp sau: \(bc-b-c\le0\)

Khi đó ta có:\(\Delta_a=\left(bc-b-c\right)^2-\left(b^2+c^2-2bc+1\right)\)

Mà số hạng từ bậc 2 là số dương để \(f\left(a\right)\ge0\)thì ta phải chỉ ra được:

\(\Delta_a=\left(bc-b-c\right)^2-\left(b^2+c^2-2bc+1\right)\le0\)

Hay \(bc\left(b-2\right)\left(c-2\right)-1\le0\)

Để ý \(bc-b-c\le0\)ta được \(\left(b-1\right)\left(c-1\right)\le1\)lúc này khả năng xảy ra các trường hợp sau:

- Cả \(\left(b-1\right);\left(c-1\right)\)cùng nhỏ hơn 1 hay cả b,c nhỏ hơn 2 và theo bất đẳng thức Cô si ta được:

\(b\left(2-b\right)\le\frac{\left(b+2-b\right)^2}{4}=1;c\left(2-c\right)\le\frac{\left(c+2-c\right)^2}{4}=1\)

\(\Rightarrow bc\left(b-2\right)\left(c-2\right)\le1\)nên ta có \(bc\left(b-2\right)\left(c-2\right)-1\le0\)

Trong 2 số \(\left(b-1\right);\left(c-1\right)\)có một số lớn hơn 1 và một số nhỏ hơn 1 khi đó trong b,c có số lớn hơn hoặc nhỏ hơn 2 

\(\Rightarrow bc\left(b-2\right)\left(c-2\right)\le0\Leftrightarrow bc\left(b-2\right)\left(c-2\right)-1\le0\)

Vậy cả 2 khả năng đều cho \(\Delta_a\le0\)nên bất đẳng thức đã được chứng minh. Bài toán đã được chứng mình xong.

NV
22 tháng 2 2021

Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)

\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

21 tháng 7 2021

a) `4x-2>5x+1`

`<=>-x>3`

`<=>x<-3`

b) Theo BĐT Cauchy:

`a^2+b^2 >= 2ab`

Tương tự:

`b^2+c^2>=2bc`

`c^2+a^2>=2ca`

Cộng vế với vế: `2(a^2+b^2+c^2) >= 2(ab+bc+ca)`

`<=>a^2+b^2+c^2 >= ab+bc+ca` (ĐPCM)

a, \(4x-2>5x+1\Leftrightarrow-x>3\Leftrightarrow x< -3\)

b, Ta có : \(a^2+b^2+c^2\ge ab+bc+ca\)

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)* luôn đúng *